#### **Self-Managed Cells and their Federation**

Prof. J. Sventek University of Glasgow joe@dcs.gla.ac.uk

In collaboration with M. Sloman, E. Lupu, and N. Dulay of Imperial College London

#### Outline

- Healthcare application scenario
- Basic architectural building block SMC
- Body-area network (SMC in the small)
- SMC federation
- Integration into health information systems (SMC in the large)
- Summary/conclusions

#### Patient monitoring

- Average age of population in most countries is shifting to higher values (baby boomers)
- Consumption of health care is strongly correlated with age
- Patient recovery from major health events is substantially more successful if this recovery can take place in familiar environs
- Critical care delivery is the most expensive form of health care
- Out-patient monitoring of stable critical care patients should lead to substantially better outcomes while substantially reducing costs.
- Any such system must be integrated into the overall IT infrastructure supporting health care delivery.

Ubiquitous e-Health Healthcare

Everywhere



Wireless Video Camera Pill

#### Applications

Automated monitoring

- Implanted devices
- Smart clothing
- Swallow/inject intelligent sensors and actuators
- Reaction to complex drug regimes

#### **Benefits**

- High → lower risk monitoring
- Mobility for chronically ill
- Greater out-of-hospital patient management
- Mass data & analysis
  - Emergency feedback or response

#### Autonomic Management

- Autonomic self-organising, self-configuring, self-healing, self-optimising, *adaptive* management
- Remove human from the loop
- "Intelligent" agents, mobile agents, policy, genetic algorithms?



Policy-based control loops
 Self-Managed Cell (SMC) architecture

#### **Basic Model**

- Patient wears non-invasive sensors as specified by his/her physician (same measurements that would be taken in the critical care unit)
- These sensors are knitted into an autonomic, body-area, distributed system
- Each such autonomic system (a self-managed cell [SMC]) federates with appropriate other SMCs; in particular, each federates with the SMC that represents the IT infrastructure supporting the healthcare delivery system
- The connectivity that enables this federation (in particular, connectivity back to the responsible care giver) must be spectrum and protocol agnostic

### **Policy-Based Management**





# Basic Self-Managed Cell



21 June 2007

### **General Self-Managed Cell**



#### **Body-area Architecture**

Event bus is publish/subscribe using a broker

The broker is content-based

- A discovery/membership service is concerned with keeping track of which devices and services are "in" a self-managed cell
- Each device has a unique identifier (e.g. 802.\* MAC address of one of the communication interfaces)

#### At-most-once, persistent event delivery



- No session establishment for Publisher
- Subscriber must register 'filter' and callback
- Push of event from Publisher to Broker (and Broker to Subscriber) is synchronous – i.e. exception condition is returned to sender if unsuccessful
- Broker attempts to deliver a message until it knows that a Subscriber is no longer a member of the SMC
- When purge event received, removes 'filter' and any queued messages associated with that Subscriber
- Each Subscriber is guaranteed to receive all messages from a particular publisher in the same order as received by the Broker

21 June 2007

# At-most-once, persistent, quenchable event delivery



- Publisher must register 'Ev type' and callback
- Subscriber must register 'filter' and callback
- Push of event from Publisher to Broker (and Broker to Subscriber) is synchronous – i.e. exception condition is returned to sender if unsuccessful
- Broker attempts to deliver a message until it knows that a Subscriber is no longer a member of the SMC
- When purge event received
  - If for a subscriber, removes 'filter' and any queued messages associated with that Subscriber
  - If for a publisher, removes 'Ev type'
- Each Subscriber is guaranteed to receive all messages from a particular publisher in the same order as received by the Broker
- Quench/unquench messages sent to Publisher if the number of subscribers matching event type is zero/non-zero.
- 21 June 2007

# How to incorporate a sensor/mote into this structure?





#### Authentication

- performed SMC wide (device/service is a member of the SMC)
- integrity/confidentiality are required in health-care scenarios
- access control component-specific, done through policies (authorization policies)

#### **Discovery/Membership**

- Detect new devices within communication range
- Vette device for membership
  - obtain device profile
  - perform any required authentication
- Generate new cell member event
- Determine when device leaves cell
  - Generate cell member left event

 Discovery protocol DOES NOT use the event system to discover and negotiate with devices; the discovery service DOES use the event service to announce the addition/removal of a member

#### Where do the new device/service events go?

- The system must be primed with obligation policies that listen for these events
- Upon receipt of one of these events, the action enters the device/service into appropriate domain[s]
- A particular obligation policy will be interested only in particular types of devices or services; new device/service events may trigger several such obligation policies
  - if can specify event type and filter expression upon subscription, then only the particular obligation policy that is interested in that particular device/service type will be notified
  - if cannot specify filter expression to event bus, than all such policies will be invoked; only those for which the condition is true will perform actions

#### **Discovery protocol**

- Cell is centred around event bus broker
- Device that contains the broker broadcasts its identity message at frequency ω<sub>B</sub> (the identity message has the form "id; type[; extra]")
- Other devices respond to broker identity message with unicast device identity message
- Broker device and other device carry on vetting protocol (obtain profile[; authenticate])

#### Discovery protocol (cont)

- After other device knows that it has been granted membership, it unicasts its identity message at frequency ω<sub>D</sub>
- If broker device misses n<sub>D</sub> successive device identity messages, it declares the device to have forfeited its membership in the cell
- If the other device misses n<sub>B</sub> successive broker device identity messages, it infers that it is no longer a member of that cell
- Stability of system requires n<sub>B</sub> ω<sub>B</sub> = n<sub>D</sub> ω<sub>D</sub>
   Currently exploring ramifications of ω<sub>B</sub> ≠ ω<sub>D</sub>

#### **Communication primitives required**

- Event bus is only used for communications between cell management elements
- Basic communication primitives are required to implement the event bus communications, required protocols, and general communication between application components
  - broadcast, asynchronous messaging
  - multicast, asynchronous messaging
  - unicast, asynchronous messaging
  - remote method invocation
  - reliable, flow-controlled streams

#### What about services?

- Devices are discovered by the discovery service.
- When a device becomes part of the cell, it generates events announcing active services that it provides/hosts
- While a member of the cell, each device generates an event whenever another service that it provides/hosts becomes active or if such a service is deactivated

#### The Policy Service

#### two types of policies

- authorisation policies define what actions are permitted under given circumstances
- obligation policies define what actions to carry out when specific events occur if certain conditions are fulfilled (ECA rules)
- The general format of an obligation policy follows that of traditional ECAs:

on <event> do if <condition> then <action sequence>

#### **Policy Service Architecture**



21 June 2007

#### SMC on a gumstix



## Hardware Configuration



## Throuput of BNS's



26

21 June 2007

# Performance of the Policy Service

|   | Task                                                                                               | Time (ms) |
|---|----------------------------------------------------------------------------------------------------|-----------|
| 1 | Executing a policy (no condition, empty action)                                                    | 13.6      |
| 2 | Executing a policy (no condition, an action to issue a command to BSN via IEEE 802.15.4)           | 48.2      |
| 3 | Executing a policy (a condition, an action to publish a new event)                                 | 136       |
| 4 | Executing a policy (a condition, an action to create a managed object upon discovery of a new BSN) | 168       |

#### **Performance of Event Service**



#### **Federated SMCs**

#### Peer SMCs (peer devices, peer networks, SLAs...)



#### **Federation Essentials**

- Architecture traditional flat, one-dimensional architecture vs. hierarchical, multi-tiered architecture
- Ontology federates must possess an agreed vocabulary of common terms and their meanings
- Security and privacy as the level of integration increases between autonomous managed resources, protecting the security and privacy of these resources also increases; it is critical not to assume that every federate has access to all distributed resources; there may be a natural precedence among federates
- Negotiation given the potentially ephemeral nature of these federations, negotiation protocols between SMC's to create these federations are essential

#### **SMC Federation Establishment**



21 June 2007

#### **Missions across SMCs**



#### Validation of missions



21 June 2007

#### SMCs in the large

- As we saw earlier, the basic features of an SMC are an event bus, a discovery service, and a policy service
- The implementation environment for the bodyarea distributed system is particularly simple
- How does one translate these concepts to a wide-area context?
- How does one exploit the ephemeral federation of mobile SMCs with fixed SMCs?

#### Wide-area SMC implementation

- Body-area content-based event bus modelled after Siena formats and features, without broker network; therefore, event bus implementation in the wide area is simply Siena
- The discovery service is a combination of Service Location Protocol (SLP) and active registration within directory services (e.g. LDAP)
- Ponder2 (the implementation in the body-area system) was designed for use at all levels of scale

# Communication of information over ephemeral federations

- The federation mechanism permits two SMCs to interact subject to the defined interaction policies
- The usual reason for federation is to transmit information from mobile, constrained environments for storage and analysis in less-constrained, fixed environments.
- As indicated earlier, different applications will require different interaction styles to meet their needs
- In addition to the urgent delivery of critical events, we have explored more relaxed forms of data transfer using delay tolerant networking techniques

#### **DTN** scenario

- Track the use of asthma inhalers across a geographically-distributed population
- Patient is equipped with an inhaler that simply counts the number of uses
- Inhaler contains the battery, storage space, networking capabilities, and processing power required of an SMC.
- Goal is to monitor inhaler usage and gather statistics on seasonal and geographical variation in inhaler usage

### **Specifics**

- Prior to use, an inhaler is loaded with enough patient-specific information to allow for data collection to take place
- Inhaler count data, together with identifying and location information, finds its way to the patients general practitioner's surgery (doctor's office)
- Statistical queries can be made of the distributed asthma data within the wireline environment
- The count data for a patient should be uploaded whenever the inhaler SMC is able to federate with other SMCs that are part of the NHS fabric

#### **SMCs** involved

Inhaler (many, mobile)
Ambulance (fewer, mobile)
Doctor's surgery (even fewer, fixed)
Hospital (small number, fixed)

#### DTN

- Whenever the inhaler can federate with an instance of one of the other three SMC types, it issues a custody transfer request for a bundle containing its data
- The SMC that accepts the custody transfer associates its current location with the bundle and then forwards it onto the final destination (doctor's office/surgery)
- If the transfer has been to an ambulance, then it will eventually transfer custody of the now augmented packet to the next hospital with which it can federate
- Once received by a fixed SMC, the data will be transferred to its final destination.

#### Conclusions

- Prototype implementation has demonstrated that the SMC pattern can be applied to e-Health applications
- Event bus provides sufficient performance, modularity, and scale to adequately address e-Health management traffic
- ECA policy-based management provides a simple and effective strategy for encoding the necessary adaptation strategy for e-Health applications
- The SMC concept can be extended to larger scale environments
- The federation techniques that were developed for mobile SMCs also work when federating with larger scale, fixed environments

#### **Future Work**

Security and trust in body area networks

- Negotiation protocols required for peer SMC's to federate (Glasgow PhD dissertation)
- Augmentation of the basic system with AI inference engines (e.g. support vector machines)

For more information http://www.dcs.gla.ac.uk/amuse/